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Summary: Tropical forests vary widely in biomass carbon stocks and fluxes even after 54 

controlling for forest age. A mechanistic understanding of this variation is critical to accurately 55 

predicting responses to global change. We review empirical studies of spatial variation in 56 

tropical forest biomass, productivity, and woody residence time, focusing on mature forests. 57 

Woody productivity and biomass decrease from wet to dry forests and with elevation.  Within 58 

lowland forests, productivity and biomass increase with temperature in wet forests, but 59 

decrease with temperature where water becomes limiting. Woody productivity increases with 60 

soil fertility, whereas residence time decreases, and biomass responses are variable, consistent 61 

with an overall unimodal relationship. Areas with higher disturbance rates and intensities have 62 

lower woody residence time and biomass.  These environmental gradients all involve both 63 

direct effects of changing environments on forest carbon fluxes and shifts in functional 64 

composition – including changing abundances of lianas -- that substantially mitigate or 65 

exacerbate direct effects. Biogeographic realms differ significantly and importantly in 66 

productivity and biomass even after controlling for climate and biogeochemistry, further 67 

demonstrating the importance of plant species composition. Capturing these patterns in global 68 

vegetation models requires better mechanistic representation of water and nutrient limitation, 69 

plant compositional shifts, and tree mortality. 70 

Plain language summary: Tropical forests vary widely in woody productivity, tree mortality, and 71 

biomass carbon stocks, even for forests of the same age. Reviewing previous studies, we find 72 

that productivity is highest in warm, wet forests on fertile soils, whereas mortality is higher at 73 

higher soil fertility and higher disturbance. This in turn means that biomass is higher at higher 74 

rainfall and temperature, lower disturbance, and intermediate soil fertility.  75 
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I. Introduction  79 

Extant tropical forests vary widely in biomass density and thus carbon stocks, even 80 

when controlling for forest age (Becknell et al., 2012; Lewis et al., 2013; Poorter et al., 2016; 81 

Alvarez-Davila et al., 2017; Sullivan et al., 2020). Much of this biomass variation is associated 82 

with climate and biogeochemistry, which influence woody productivity, residence time, and 83 

biomass both directly and indirectly via shifts in plant functional composition. However, our 84 

understanding of these patterns and their underlying mechanisms remains incomplete (Fig. 1). 85 

A mechanistic understanding of current variation in tropical forest carbon stocks and fluxes 86 

with climate, soils, and other factors is a critical precursor to accurately predicting forest 87 

responses to anthropogenic change. 88 

Uncertainty about how tropical forest carbon pools will respond to global change is one 89 

of the largest sources of uncertainty in projecting future global carbon budgets and climate 90 

(Cavaleri et al., 2015). Tropical forests currently account for two-thirds of terrestrial biomass 91 

carbon stocks (Pan et al., 2013) and nearly a third of global soil carbon to 3 m depth (Jobbágy & 92 

Jackson, 2000). Increasing temperatures, changing precipitation patterns and disturbance 93 

regimes, increasing atmospheric carbon dioxide, and increasing nutrient deposition have the 94 

potential to greatly alter tropical forest carbon stocks and fluxes, and thus the global carbon 95 

budget (Lewis et al., 2009; Wright, 2010). However, the combined impacts of these global 96 

change drivers on tropical forests remain unclear, with contrasting effects expected under 97 

different mechanisms and hypotheses, and mixed evidence to date of overall patterns (Lewis et 98 

al., 2009; Wright, 2010). This uncertainty is reflected in highly divergent predictions for tropical 99 
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forest responses in different earth system models (Cavaleri et al., 2015; Koven et al., 2015; 100 

Rowland et al., 2015).  101 

Fundamentally, variation in mature forest aboveground biomass (AGB) arises from 102 

variation in aboveground woody productivity (AWP) and/or aboveground woody residence 103 

time (AWRT). AWP depends on NPP (net primary productivity) and allocation to wood, and 104 

ultimately on GPP (gross primary productivity) and carbon use efficiency (Malhi, 2012) (Fig. 1). 105 

In recent decades, as interest in forest carbon budgets has increased, many studies have 106 

investigated patterns and mechanisms of spatial variation in tropical forest AWP and AGB with 107 

abiotic and biotic factors (e.g., Levine et al., 2016; Malhi et al., 2017; Taylor et al., 2017; Moore 108 

et al., 2018; Sullivan et al., 2020) (methods summarized in Box 1). This research builds naturally 109 

on an older literature on forest structure and composition (e.g., Richards, 1952; Gentry, 1988). 110 

Some consistent large-scale patterns have become clear; e.g., increasing dry season length (and 111 

decreasing precipitation) is associated with lower AWP and AGB (Becknell et al., 2012; Poorter 112 

et al., 2017; Taylor et al., 2017). However, other patterns are inconsistent among studies; e.g., 113 

AGB increases with soil fertility in some studies (Slik et al., 2013; Lloyd et al., 2015) and 114 

decreases in others (Lewis et al., 2013; Schietti et al., 2016).  115 

Mechanisms and patterns involving changes in tree mortality or shifts in plant functional 116 

composition remain poorly understood, whereas those involving changes in productivity of a 117 

given plant functional type along environmental gradients are relatively well-understood. 118 

Variation in tree mortality and thus AWRT is a key driver of spatial variation in AGB within the 119 

tropics (Johnson et al., 2016), yet our understanding of tropical tree mortality remains 120 

extremely limited (McDowell et al., 2018). Variation in plant functional composition also plays a 121 
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critical role in explaining large-scale variation in AWP, AWRT, and AGB. Different environments 122 

select for different plant functional composition, which in turn influences stand-level AWP, 123 

AWRT, and AGB in ways that may enhance or counter direct effects of environmental drivers 124 

(Fyllas et al., 2009; Fyllas et al., 2017; Turner et al., 2018). For example, the abundance of lianas 125 

(woody climbing plants) varies strongly with environmental conditions (DeWalt et al., 2015) and 126 

lianas negatively affect tree growth and survival and thus AWP, AWRT, and AGB (Ingwell et al., 127 

2010; Duran & Gianoli, 2013; van der Heijden et al., 2015; Lai et al., 2017), with differential 128 

effects across tree species (Muller-Landau & Visser, 2019). Indeed, experimental liana removal 129 

increased AWP by 65% and AGB accumulation by 75% in a secondary moist tropical forest (van 130 

der Heijden et al., 2015).  131 

Earth system models (ESMs) are key tools for predicting the future of the global carbon 132 

cycle under global change, and for attributing temporal variation to different factors (Heavens 133 

et al., 2013). These models are mechanistic, and attempt to capture hypothesized critical 134 

processes as gleaned from empirical studies (Heinze et al., 2019). However, the most recent set 135 

of publicly released models completely fail to reproduce spatial variation in AGB, AWP, and 136 

AWRT in old-growth tropical forests (Fig. 2). This demonstrates that the models fail to 137 

adequately represent the mechanisms or capture the patterns of spatial variation in tropical 138 

forests today, and highlights the need for a more mechanistic understanding of these patterns.  139 

Here we review empirical studies documenting how different environmental factors 140 

relate to tropical forest productivity, residence time, biomass, their proxies, and related 141 

variables.  We first briefly describe the types of studies included, and their strengths and 142 

weaknesses. We then review empirical findings on tropical forest variation with climatic water 143 
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availability (precipitation regimes), elevation and temperature, soil fertility, disturbance, and 144 

biogeographic realm, and discuss hypothesized mechanisms underlying observed relationships.  145 

We discuss critical knowledge gaps and uncertainties in mechanistic understanding and in 146 

datasets, and key directions for future research.  147 

II. Methods  148 

We searched the literature for studies of among-site variation in our focal variables in 149 

mature, unlogged tropical forests, or in secondary forests when controlling for stand age, that 150 

included eight or more sites. We specifically searched for studies of variation in AGB, AWP, 151 

AWRT (Box 1), tree mortality rates, and tree turnover rates with respect to elevation, 152 

temperature, climatic measures of water availability (precipitation, dry season length, climatic 153 

water deficit, etc.), and/or soil fertility (soil phosphorus, cation exchange capacity, base cations, 154 

etc.).  We also opportunistically tabulated studies reporting results for canopy height, basal 155 

area (BA), and basal area productivity (BAP), which serve as proxies for AGB and AWP (Box 1), 156 

as well as for the related productivity variables of ANPP, Litterfall NPP, and GPP (Fig. 1). Where 157 

a study included multiple analyses using different measures of the environmental factor of 158 

interest (e.g., precipitation and dry season length), we report the result for the independent 159 

variable showing a stronger relationship.  Where both multivariate and bivariate analyses were 160 

reported, we report the multivariate analyses.  Additional details on the literature search 161 

methods are given in Notes S1, the geographical distribution of data is shown in Figs. S1 and S9, 162 

and the resulting database is available at Dataset S1. In the remainder of this section, we 163 

discuss the main sources of error in our focal variables.   164 
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Most currently available information on our focal variables are based on tree plot 165 

census data. Because of high local spatial variability in the number and sizes of large trees, 166 

these plot-based estimates exhibit considerable sampling error, even for plots of 1 ha, and this 167 

error increases at smaller plot sizes (Muller-Landau et al., 2014). We thus highlight studies 168 

based on plots with a median size of 1 ha or larger (124 of 201 results reviewed).  Plot-based 169 

data may also have systematic errors, reflecting nonrandom plot placed. Some studies explicitly 170 

choose plot locations to avoid canopy gaps or areas of recent natural disturbance (e.g., 171 

Kitayama & Aiba, 2002; Baez et al., 2015), and plot locations tend to be biased towards taller 172 

forests even when  methods do not explicitly state such criteria (Sheil, 1996; Marvin et al., 173 

2014).  Plots also tend to be located in more accessible areas, which have a stronger signature 174 

of past human land use (McMichael, CNH et al., 2017) and current human impacts (McMichael, 175 

CH et al., 2017).   176 

Estimation of AGB and AWP depend on biomass allometry equations (Box 1), which are 177 

a major source of error.  These equations estimate individual tree aboveground woody biomass 178 

from measured tree diameter, and sometimes also tree height and/or wood density (e.g., 179 

(Chave et al., 2005; Chave et al., 2014)). The key issue for analyses of among-site variation is 180 

that studies typically apply the same equation(s) across many sites.  However, biomass 181 

allometries differ systematically among sites (e.g., Chave et al., 2014), reflecting differences in 182 

height allometries (Feldpausch et al., 2012) and crown form (Ploton et al., 2016), and 183 

potentially also rates of heartrot (Heineman et al., 2015) and crown breakage (Arellano et al., 184 

2019). Such differences are at best partially captured with generalized allometric equations 185 

which at best incorporate local height measurements and associated differences in diameter-186 
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height allometries, continuous terms for climate variation, and/or different equations for 187 

different regions or forest types (Chave et al., 2005; Chave et al., 2014). 188 

AWP estimates suffer from additional sources of error.  AWP estimates depend on 189 

diameter growth measurements, and thus are highly sensitive to diameter measurement errors 190 

and to data quality assurance quality control procedures, including procedures for estimating 191 

diameter change in buttressed trees (Sheil, 1995; Cushman et al., 2014; Muller-Landau et al., 192 

2014).  AWP is temporally variable (e.g., Rutishauser et al., 2020), and thus sampling errors for 193 

short census intervals are high. At the same time, typical calculations underestimate AWP in 194 

longer census intervals because they increasingly miss AWP of trees that die between censuses 195 

(Kohyama et al., 2019). Finally, standard methods for estimating AWP entirely fail to capture 196 

wood production to compensate for branchfall, estimated at 15-45% of total AWP (Malhi et al., 197 

2014; Marvin & Asner, 2016; Gora et al., 2019). That is, as trees grow, they do not simply accrue 198 

biomass, they also shed old branches as they produce new ones.  199 

Residence time variables have particularly high sampling errors, which may in part 200 

explain the dearth of published analyses. Because tree mortality is a binomial process and 201 

mortality rates are low, sampling errors in mortality rates are large, especially in small plots and 202 

shorter census intervals.  Strong temporal variation in mortality – for example due to droughts 203 

(Bennett et al., 2015) – makes it yet more difficult to capture long-term mean mortality rates. 204 

Tree turnover rates, calculated as the average of mortality and recruitment rates, suffer these 205 

same problems.  Syntheses of among-site patterns in mortality and turnover are further 206 

hindered by variability in methods for calculating mortality rates, inadequate reporting of 207 

calculation methods, and systematic biases in many estimators (Kohyama et al., 2018) (see 208 
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Notes S1). Calculating AWRT as the quotient AGB/AWP (Box 1) only partially avoids this issue, 209 

as AWP estimates also depend on mortality (because trees that die don’t contribute to AWP).  210 

Such estimates of AWRT may also be biased by the equilibrium assumption that underlies them 211 

(see Notes S1).   212 

Finally, most estimates of AGB, AWP, and AWRT omit smaller trees, lianas, epiphytes, 213 

herbaceous plants, and non-woody tissues, and (by definition) below-ground biomass; these 214 

are generally assumed to be relatively small and/or to vary proportionately. These assumptions, 215 

and other aspects of measurement methods and associated errors are discussed in more detail 216 

in Notes S1.   217 

III. Climatic water availability 218 

 Precipitation patterns vary among tropical forests from those that receive abundant 219 

precipitation year-round (wet tropical forests) to those that experience limitations in water 220 

availability during one or two dry seasons (moist and dry tropical forests), variation we 221 

encompass under the term climatic water availability.  This variability is evident in the large 222 

range of mean annual precipitation among tropical forests (Fig. S2). In general, the length and 223 

intensity of dry seasons are more important than total annual precipitation in determining 224 

forest carbon stocks and fluxes. Further, water limitation depends not only on precipitation, but 225 

also on potential evapotranspiration (itself dependent on temperature, solar radiation), as well 226 

as soil depth, soil water-holding capacity, and topographic position. Many analyses thus 227 

evaluate relationships with more integrative measures of climatic water availability such as dry 228 

season length or maximum climatological water deficit, which are generally better predictors of 229 
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forest structure and dynamics (e.g., Alvarez-Davila et al., 2017). Here, we discuss how our focal 230 

variables vary with climatic water availability, and evaluate patterns in relation to the range of 231 

annual precipitation and temperature within studies (Figs. 3, S3).  232 

Productivity  233 

Productivity variables are positively associated with climatic water availability across 234 

lowland tropical forests over the range from dry to wet forests. Across lowland sites, AWP, 235 

litterfall, and ANPP are positively related to climatic water availability in most studies (Fig. 3a), 236 

with an initial fast increase slowing to a plateau or even a mild decrease for precipitation above 237 

~3000 mm/yr (Poorter et al., 2017; Taylor et al., 2017). The positive effects of precipitation 238 

weaken and reverse in montane tropical forests (e.g., lowland Hofhansl15b vs. montane 239 

Hofhansl15c in Fig. 3a; (Hofhansl et al., 2015)). A meta-analysis of 145 tropical forests found 240 

that an increase in mean annual precipitation (MAP) from 1000 to 3000 mm was associated 241 

with a 2.3-fold increase in ANPP at 28°C, a 1-5 fold increase at 24°C, no change at 20°C, and a 242 

decrease in ANPP at temperatures below 20°C (Taylor et al., 2017).  243 

Lower forest productivity at lower precipitation reflects limitation by water availability 244 

and/or drought stress when potential evapotranspiration exceeds precipitation, combined with 245 

allocational changes and compositional shifts towards drought-tolerant species (Flack-Prain et 246 

al., 2019). Limited water availability translates into reduced gross primary production through 247 

both reduced leaf area maintained (including drought deciduous leaf phenology) and reduced 248 

photosynthesis per available leaf area as plants close their stomates and/or invest in more 249 

drought-tolerant organs with lower light use efficiency (Tan et al., 2013; Guan et al., 2015; Wu 250 

et al., 2016; Pfeifer et al., 2018). Higher precipitation is also associated with higher allocation of 251 
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above-ground NPP to AWP (Hofhansl et al., 2015) and taller trees for a given diameter (Banin et 252 

al., 2012), further contributing to higher AWP. Compositional shifts also contribute: species 253 

found in drier forests have lower growth rates than those restricted to wetter forests (Baltzer & 254 

Davies, 2012; Brenes-Arguedas et al., 2013; Kupers et al., 2019), because drought-tolerance 255 

traits, such as narrower xylem vessels, are costly (Gorel et al., 2019), whereas the “drought-256 

avoiding” deciduous strategy involves foregoing photosynthesis in part of the year (Brenes-257 

Arguedas et al., 2013).  258 

Though the direct effects of water availability on productivity are positive, higher rainfall 259 

is also associated with increased cloudiness and decreased soil fertility, both of which depress 260 

productivity, and may explain declining productivity at very high rainfall and lower 261 

temperatures (Taylor et al., 2017). Wetter sites on average have higher cloudiness and thus 262 

reduced light availability (Wagner et al., 2016). High precipitation is also associated with soil-263 

mediated reductions in productivity due to leaching of nutrients and reduced soil redox 264 

potential; these influences are relatively more important at cooler temperatures. Decreases in 265 

productivity with precipitation at the very highest levels of precipitation, especially in cooler 266 

sites (Taylor et al., 2017) likely reflect these correlated increases in limitation by light and 267 

nutrients.  268 

 269 

Residence time 270 

Few studies have evaluated how among-site variation in AWRT, mortality, or turnover 271 

relate to climatic water availability, and those that do have found at best weak relationships 272 

(e.g., Quesada et al., 2012; Vilanova et al., 2018).  More studies have found trends for AWRT to 273 
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be higher (and turnover lower) in wetter sites than the opposite, but overall patterns are 274 

inconsistent (Fig. 3b).   This may reflect contrasting trends in different mortality threats with 275 

precipitation regimes.  Drier sites are more likely to experience fire (Cochrane, 2011) and 276 

drought stress elevates mortality through hydraulic damage (Choat et al., 2018), whereas 277 

higher rainfall is associated with greater risks of mortality from treefalls, lightning, and 278 

landslides (Espirito-Santo et al., 2010; Yanoviak et al., 2020).   279 

In contrast to the paucity of studies of spatial variation, there have been multiple 280 

studies of temporal variation. Many studies have documented elevated mortality in drought 281 

years (reviewed in (Phillips et al., 2010; Bennett et al., 2015)), whereas a few have found higher 282 

mortality in wetter years (Aubry-Kientz et al., 2015) or wetter seasons (Brokaw, 1982; Fontes et 283 

al., 2018). Patterns of temporal variation in mortality with water availability do not necessarily 284 

predict among-site variation because compositional shifts at least partially compensate for 285 

shifts in mortality threats. For example, tree species common in drier sites have higher survival 286 

under drought than those common in wetter sites (Engelbrecht et al., 2007; Baltzer & Davies, 287 

2012; Brenes-Arguedas et al., 2013; Esquivel-Muelbert et al., 2017).  288 

AGB 289 

AGB is positively related to climatic water availability in tropical forests in 16 of 16 290 

studies finding a statistically significant relationship (Fig. 3c). The relationship of AGB with 291 

precipitation exhibits an initially steep increase below 2000 mm/yr gradually saturating at 292 

higher precipitation (Becknell et al., 2012; Poorter et al., 2016; Alvarez-Davila et al., 2017). 293 

Increases are roughly parallel in old-growth and secondary forests: over 1000-3000 mm MAP, 294 

AGB increases 2-fold in 20-year secondary forests (Poorter et al., 2016), and ~2.3-fold in mature 295 
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forests (Alvarez-Davila et al., 2017). Qualitatively the same patterns are found for tree basal 296 

area and canopy height, for both plot-based and remote sensing studies, and in both old-297 

growth and secondary forests of a given age (Fig. 3c). Measures of drought stress such as dry 298 

season length or dry season water deficit are generally better predictors of AGB than 299 

precipitation alone, and exhibit more linear relationships with AGB (Poorter et al., 2016; 300 

Alvarez-Davila et al., 2017). At extremely high precipitation levels above ~4000 mm/yr, AGB 301 

may decrease with further increases in precipitation, but there are few data for such sites, and 302 

spatial variation in precipitation may be confounded with solar radiation, soil fertility and other 303 

factors (Alvarez-Davila et al., 2017). Overall the patterns in AGB parallel those in AWP, 304 

consistent with what would be expected given little variation in AWRT with precipitation (Fig. 305 

4a).  306 

Synthesis 307 

Overall, patterns of variation in tropical forest productivity and biomass with climatic 308 

water availability are relatively well-documented and well-understood, and the underlying 309 

mechanisms are increasingly well-represented in forest and vegetation models (Christoffersen 310 

et al., 2016; Levine et al., 2016; Xu et al., 2016). Additional data and analyses are needed to 311 

establish whether/how mortality rates vary spatially with climatic water availability, and to 312 

investigate the role of compositional shifts in contributing to variation in carbon fluxes and 313 

stocks. The role of lianas deserves more attention, as lianas are more abundant in drier sites 314 

(DeWalt et al., 2010), and could contribute to their lower tree productivity and possibly lower 315 

residence time. 316 

 317 
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IV. Temperature and elevation  318 

Most temperature variation across tropical forests is explained by elevation (Pearson r=-319 

0.96 across 14,643 1-km pixels; Fig. 5a), and thus our understanding of temperature influences 320 

is based largely on elevational variation. However, it is important to keep in mind that 321 

elevational temperature variation is confounded with other factors. Atmospheric pressure 322 

decreases systematically with elevation, which affects photosynthesis both directly and 323 

indirectly by altering selection on photosynthetic traits (Wang et al., 2017).  Cloud cover (and 324 

thus solar radiation) and precipitation also change with elevation (Fig. 5b,c), as do other climate 325 

variables and geomorphology (Porder et al., 2007). Indeed, across tropical forests globally, 326 

mean cloud cover increases from 57% at 29°C to ~89% at 8°C (Fig. S4). Here we synthesize 327 

results for the many observational studies of variation with elevation and the few with 328 

temperature, and graph results in relation to the ranges of temperature, elevation, and 329 

precipitation represented in each study (Figs. 6, S5).  330 

Productivity  331 

All productivity variables decline with elevation (Fig. 6a), suggesting a positive effect of 332 

temperature, but analyses with temperature find both positive and negative effects (Fig. 6a,d).  333 

Overall patterns seem consistent with a positive effect of temperature in wet sites, and a 334 

negative effect in dry sites.  This is particularly apparent in studies that evaluate interactions of 335 

climatic water availability and temperature (Taylor et al., 2017; Sullivan et al., 2020).  A meta-336 

analysis found that ANPP (litterfall) decreased with temperature for precipitation below ~1400 337 

mm/yr (1600 mm/yr), and increased with temperature for precipitation above that level, with 338 
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ever faster increases for higher precipitation (Taylor et al., 2017). At 2500 mm MAP, ANPP 339 

doubles between 10 and 22°C and triples by 28°C (Taylor et al., 2017).  340 

Spatial variation in AWP with temperature can be explained in large part by the 341 

temperature responses of plant metabolic rates – photosynthesis and respiration. Across sites, 342 

the optimum temperature for photosynthesis is strongly positively correlated with mean 343 

growing season temperature (Tan et al., 2017), and the photosynthetic rate at the temperature 344 

optimum increases with temperature, meaning warmer sites are expected to have higher 345 

photosynthetic rates, if water is not limiting (Farquhar et al., 1980). Maintenance respiration 346 

rates also increase with temperature within sites -- but acclimation means that respiration rates 347 

at growth temperatures increase very little or not at all (Atkin et al., 2015; Malhi et al., 2017). 348 

Biomass accumulation rates increase with temperature in well-watered conditions (Cheesman 349 

& Winter, 2013), likely reflecting an increase in biosynthesis rates. In contrast, where water is 350 

limiting, photosynthesis decreases with temperature due to increased stomatal closure and 351 

higher respiratory costs (Schippers et al., 2015). Overall, for any given plant and site, net 352 

photosynthesis is expected to be a unimodal function of temperature, reflecting biochemically 353 

determined unimodal responses of maximum photosynthetic rates in combination with 354 

stomatal conductance and respiration (Slot & Winter, 2017). 355 

 Allocational and compositional shifts also contribute to spatial variation in AWP with 356 

temperature. Cooler sites tend to have plant species with higher nutrient use efficiencies, 357 

longer-lived leaves, higher LMA (Asner & Martin, 2016) and other slow life history traits (Dalling 358 

et al., 2016; Bahar et al., 2017). These traits increase competitiveness in lower resource 359 

environments, while reducing light use efficiency and thus stand-level productivity (Reich, 360 
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2014). Cooler, higher elevation sites also tend to have higher allocation below-ground, a 361 

pattern consistent with increased nutrient limitation (Hofhansl et al., 2015). This allocational 362 

shift could reconcile stronger elevational decreases in ANPP with weaker patterns in total NPP. 363 

Among water-limited sites, increasing temperature increases drought stress, potentially leading 364 

to the same types of allocational and compositional shifts expected under reduced climatic 365 

water availability.   366 

Finally, correlated variation in other environmental factors also influences patterns with 367 

temperature among tropical sites. Cooler tropical forests are found overwhelmingly at higher 368 

elevations, where cloud cover is higher and fog is more frequent, thereby decreasing solar 369 

radiation and increasing light limitation (Bruijnzeel et al., 2011). Cooler temperatures also slow 370 

decomposition (Taylor et al., 2017) and reduce biological N fixation (Houlton et al., 2008), 371 

which tends to reduce nutrient availability, especially nitrogen availability (Wilcke et al., 2008; 372 

Nottingham et al., 2015). However, higher elevation and thus cooler forests tend to be found 373 

on geochemically young substrates with eroding slopes, which are associated with relatively 374 

higher availability of rock-derived nutrients (Porder et al., 2007). Thus, for any given area, 375 

elevational variation in cloud cover, rainfall, and soils can magnify or counter the patterns 376 

expected based on temperature alone, and interact with compositional shifts (Peng et al., 377 

2020).  378 

Residence time 379 

Few studies have evaluated how AWRT, mortality, or turnover rates vary with 380 

temperature or elevation, and relationships were not statistically significant in most studies 381 

(Fig. 6b,e). Of the four studies finding significant relationships with elevation, three show higher 382 
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AWRT (lower turnover) at higher elevation (Fig. 6b).  This is consistent with the global pattern 383 

of a positive correlation between tree productivity and mortality (Stephenson & Mantgem, 384 

2005), given that higher elevations tend to be associated with lower productivity and slower life 385 

histories (e.g., lower LMA Asner & Martin, 2016).       386 

AGB  387 

AGB decreases with elevation in most studies, and canopy height decreases with 388 

elevation in almost all studies, but patterns of basal area variation are decidedly mixed, as are 389 

patterns of AGB with temperature (Fig. 6c, f).  It’s notable that some studies find very high or 390 

even the highest AGB at intermediate or high-elevation sites (e.g., Girardin et al., 2010); the 391 

mechanisms underlying these exceptions are an important area for future research.  In terms of 392 

the quantitative strength of these effects, regressions of AGB on elevation in Bolivia, Peru, and 393 

Ecuador find that AGB decreases 32, 34, and 50 Mg/ha per 1000 m elevation, respectively 394 

(Girardin et al., 2014). Overall, the patterns in AGB with elevation and temperature largely 395 

mirror those in AWP.   396 

Synthesis 397 

The biochemical and physiological mechanisms by which temperature interacts with 398 

water availability to affect plant productivity are relatively well understood. These are central 399 

to responses to short-term temporal variation in temperature within sites, which is reasonably 400 

well captured in mechanistic models (Schippers et al., 2015). In contrast, responses to spatial 401 

variation in temperature regimes depend in large part on acclimation, allocational shifts, and 402 

compositional variation, and remain poorly understood. Compositional patterns, such as the 403 

decline in lianas and palms with elevation (e.g., Lieberman et al., 1996), are likely to be major 404 
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contributors to among-site variation in tropical forest carbon cycling with elevation and 405 

temperature; they deserve more attention.  Finally, among-site patterns may vary not only with 406 

mean temperatures but also with extremes; e.g., relationships with maximum temperature 407 

were more often negative than those with mean temperature (Dataset S1).   408 

V. Soil fertility  409 

Tropical forests exhibit great heterogeneity in their biogeochemistry, reflecting wide 410 

variation in soil age, chemistry, and susceptibility to erosion or uplift, as well as high plant 411 

diversity; diversity matters because plants can affect soil properties under their crowns 412 

(Townsend et al., 2008; Waring et al., 2015). Soil fertility is multi-dimensional, involving many 413 

different nutrients important in different ways (Kaspari & Powers, 2016), and available in 414 

different concentrations and forms at different soil depths, that covary across sites (e.g., 415 

Quesada et al., 2010). Many studies thus evaluate patterns with respect to principal 416 

components axis or soil classes that reflect covariation in multiple nutrients (“Multi” in Fig. 7).  417 

In cases where individual studies investigated relationships with multiple soil fertility variables, 418 

we report results relative to the variable showing the strongest relationship with the 419 

dependent variable.   420 

Productivity  421 

AWP, BAP, ANPP, and litterfall are positively related to soil fertility in tropical forests.   422 

Of 22 analyses of among-site variation, 21 showed a positive trend, and 16 were significantly 423 

positive (Fig. 7a).  Fertilization experiments further demonstrate that tropical forest 424 

productivity is limited by P and by N, and suggest that K and Ca might also be limiting –only one 425 
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tropical forest fertilization experiment manipulated K or Ca (Wright, 2019). However, the range 426 

of AWP variation explained by fertility seems to be relatively smaller than that explained by 427 

climate; for example, AWP on high-phosphorus soils averages ~20% higher than AWP on low-428 

phosphorus soils in the Amazon and Sierra Leone (Quesada et al., 2012; Jucker et al., 2016). 429 

This may in part reflect shifts in allocation with fertility, with increased allocation to 430 

reproduction in more fertile sites (Wright et al., 2011).  431 

The increase in woody productivity with soil fertility is consistent with our mechanistic 432 

understanding of the role of nutrients in plant function. Higher soil nutrients enable higher 433 

plant nutrient content (Fyllas et al., 2009; Cleveland et al., 2011; Asner & Martin, 2016), which 434 

in turn enables greater plant light use efficiency (Elser et al., 2010). Higher soil nutrient 435 

availability also means plants need to spend fewer resources on nutrient acquisition, whether 436 

in constructing roots or supporting microbial symbionts, which enables higher fertility forests to 437 

turn a higher proportion of their GPP into aboveground biomass production (Vicca et al., 2012; 438 

Doughty et al., 2018). However compositional shifts partly compensate, as low-fertility sites 439 

have species with better nutrient acquisition abilities and higher nutrient use efficiencies, 440 

reducing productivity differences with soil fertility (Gleason et al., 2009; Dalling et al., 2016; 441 

Turner et al., 2018). In addition, herbivory and liana abundance increase with soil fertility; it 442 

may be that these consumers and structural parasites capture a disproportionate share of the 443 

benefits of elevated nutrient availability (Schnitzer & Bongers, 2002; Campo & Dirzo, 2003). The 444 

consequence of these compositional shifts and biotic interactions is that the increase in stand-445 

level AWP with fertility is lower than would be expected based on single-species responses in 446 

isolation, and may even be absent (e.g., Turner et al., 2018).  447 
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Residence time 448 

Soil fertility is positively associated with tree mortality rates and thus negatively 449 

associated with AWRT across tropical forests (Fig. 7b). This pattern has been found at local (de 450 

Toledo et al., 2011; Sawada et al., 2015), regional (Quesada et al., 2012), and global (Galbraith 451 

et al., 2013) scales. This variation is substantial, eclipsing both variation in productivity with soil 452 

fertility and variation in AWRT with climate. For example, across 59 sites in the Amazon, 453 

turnover increased 3-fold from low to high soil phosphorus (Quesada et al., 2012). Pantropical 454 

analyses also found strong relationships, with median AWRT increasing~50% from young to old 455 

soils in Neotropical forests, and from intermediate to old soils in Paleotropical forests (Galbraith 456 

et al., 2013).  457 

Three classes of mechanisms likely contribute to higher mortality at higher soil fertility. 458 

First, higher growth at higher soil fertility speeds the rate of self-thinning, thereby increasing 459 

associated mortality rates (Stephenson & Mantgem, 2005). Second, more productive 460 

environments select for tree species with “fast” life history strategies such as low wood density 461 

(Quesada et al., 2012), and given underlying tradeoffs, these species also have higher mortality 462 

rates (Stephenson & Mantgem, 2005; Kraft et al., 2010; Wright et al., 2010; Reich, 2014). Third, 463 

higher soil fertility is associated with higher liana abundance (Putz & Chai, 1987; Laurance et al., 464 

2001; Schnitzer & Bongers, 2002; DeWalt et al., 2006), and higher liana abundance is associated 465 

with higher tree mortality in observational and experimental studies (Ingwell et al., 2010; van 466 

der Heijden et al., 2015; Wright et al., 2015).  467 
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AGB 468 

The combination of increasing AWP and decreasing AWRT with fertility would lead to 469 

the expectation of a unimodal relationship of AGB with fertility, with AWP limiting at the low 470 

end and AWRT at the high end (Fig. 4c). Empirical studies have variously found positive, 471 

negative and no relationships of tropical forest AGB to soil fertility (Fig. 7c). For example, AGB 472 

decreased 1.4-fold from low to high soil P across 59 plots in the Amazon (Quesada et al., 2012), 473 

and decreased ~2 fold from the lowest to highest total base cations across 260 plots in Africa 474 

(Lewis et al., 2013), whereas it increased 1.4-fold with soil nitrogen across 63 plots in the 475 

central Amazon (Laurance et al., 1999).  These different patterns are consistent with what we 476 

might expect if studies span different parts of an overall unimodal relationship.  Because the 477 

decrease in AWRT is greater than the increase in AWP with fertility, we expect the peak to be 478 

located closer to the lower fertility end of the gradient. The location of the peak in AGB with 479 

respect to soil fertility is likely to vary across regions, reflecting compositional differences 480 

among regions and strong interspecific variation in mortality rates and responses to soil fertility 481 

(Condit et al., 2006; Condit et al., 2013).  482 

Synthesis 483 

It has long been clear that soil fertility plays a critical role in tropical forest structure and 484 

function (Vitousek & Sanford, 1986), and the broad outlines of its importance are evident in 485 

studies to date (Fig. 7). A central challenge is that tropical tree species display a wide diversity 486 

of strategies for nutrient acquisition and use, strategies that are critical to compositional shifts 487 

and stand-level responses to soil fertility, and their regional variation (Laliberte et al., 2017). Yet 488 

our understanding of these strategies – which include not only root morphology and foraging 489 



25 
 

behavior but also chemical root exudates and interactions with microbial symbionts – remains 490 

very limited, reflecting the general paucity of data on roots and below-ground interactions.  491 

New data, analyses, and modeling are needed to advance our understanding of soil 492 

fertility’s role in structuring variation in tropical forests. More, better, and more consistent data 493 

on tropical soils is a critical component, especially in enabling better analyses of large-scale 494 

patterns (Hengl et al., 2017). The ability to estimate foliar nutrients from airborne hyperspectral 495 

imaging has enabled large-scale data collection of these quantities and their relation to soils 496 

(e.g,. Chadwick & Asner, 2018); and satellite hyperspectral missions promise further advances 497 

(Schimel et al., 2013). Earth system models are starting to incorporate nutrients 498 

mechanistically, and can provide useful tools to explore associated mechanisms and link them 499 

to patterns at different levels (Medvigy et al., 2019; Sulman et al., 2019). 500 

VI. Disturbance 501 

 Tropical forests vary strongly in the frequency and intensity of natural disturbances, 502 

with important consequences for forest structure, dynamics, and composition.  Here, we focus 503 

specifically on short-term natural disturbances such as storms, landslides, and wildfires, 504 

excluding disturbance by chronic stressors such as drought (addressed under water availability 505 

above) and flooding (addressed by (Daskin et al., 2019)).  Variation in natural disturbance rates 506 

across the tropics is substantial and systematic.  The frequency and intensity of large-scale 507 

tropical cyclones (known regionally as hurricanes, typhoons, or cyclones) is near zero in tropical 508 

forests with latitudes <10°, and varies strongly among other areas (Ibanez et al., 2019). 509 

Convective thunderstorms and lightning occur across the tropics; and both show strong 510 

geographic variation in frequency (Pereira-Filho et al., 2015; Gora et al., 2020). Within sites, 511 
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storm impacts vary topographically, reflecting variation in wind exposure (highest on ridges, 512 

(Boose et al., 1994)), soil saturation (highest in floodplains and concave topographies, 513 

(Margrove et al., 2015)), and landslide risk (highest on steep slopes, (Larsen & Torres-Sanchez, 514 

1998).)   Wildfire risk increases with dry season length and intensity, as well as with proximity to 515 

anthropogenic disturbance (Cochrane, 2011).  516 

 Disturbance directly increases tree mortality and decreases AWRT, thereby reducing 517 

AGB (Fig. 4d). Both large-scale cyclones and local convective storms increase tree mortality 518 

from treefalls (including landslides) (Larsen & Torres-Sanchez, 1998; Ostertag et al., 2005; 519 

Negrón-Juárez et al., 2017; Hall et al., 2020) and convective thunderstorms also kill trees via 520 

lightning (Yanoviak et al., 2020). Across tropical forests, higher lightning frequency is associated 521 

with higher biomass turnover rates and lower old-growth forest biomass (Gora et al., 2020). 522 

Higher tropical cyclone frequency is associated with lower canopy height and higher stem 523 

density, reflecting an increasing number of smaller stems (Ibanez et al., 2019).  In humid 524 

tropical forests, median canopy height was 1.3-fold higher where cyclone frequency averaged 525 

less than one per century than where it averaged greater than one per decade (Ibanez et al., 526 

2019). Topographic variation in storm impacts is evident in mortality patterns; e.g., cyclone 527 

mortality rates are higher in areas with greater wind exposure (Negron-Juarez et al., 2014). 528 

Fires directly kill trees and also increase mortality rates in subsequent years, especially in 529 

wetter forests (Barlow et al., 2003), and areas that have experienced fires have lower biomass 530 

stocks than unburned areas for decades afterwards (Gerwing, 2002; Sato et al., 2016).  531 

 Disturbance also influences functional composition, as tropical tree species differ 532 

strongly in how they are affected by disturbances (Zimmerman et al., 1994; Curran et al., 2008; 533 
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Slik et al., 2010b; Paz et al., 2018; Staver et al., 2019). In general, species with “faster” life 534 

histories are able to rebound more quickly following disturbances, and thus are more common 535 

in areas with recent disturbances (Paz et al., 2018). Associated tradeoffs mean that 536 

disturbances generally increase the relative abundance of tree species with fast life histories, 537 

which tend to have low wood densities and achieve low biomass (Carreno-Rocabado et al., 538 

2012; Paz et al., 2018). Lianas also proliferate after disturbances, and thus high disturbance 539 

frequency increases liana abundance (Schnitzer & Bongers, 2011). Different disturbances can 540 

also favor particular traits; for example, species with higher wood density are less likely to 541 

suffer stem breaks during a hurricane (Zimmerman et al., 1994). Whereas shifts towards more 542 

disturbance-resistant species would tend to mitigate the direct effects of disturbance on 543 

mortality and biomass, increases in the abundance of lianas and of tree species with fast life 544 

history strategies would tend to further increase mortality and reduce biomass. Thus, 545 

compositional responses to disturbances also need to be considered to determine the total 546 

impacts of disturbance regimes on tropical forest structure and dynamics.  547 

VII. Biogeographic realm 548 

Tropical forests on different continents have significantly different productivity, 549 

residence time, and biomass. AWP is 25% higher in Asian than in Latin American forests (Taylor 550 

et al., 2019). Mean AWRT in old-growth tropical forests is also higher in Asia and Africa than in 551 

Latin America, by 22 and 33%, respectively (Galbraith et al., 2013). Consistent with higher AWP 552 

and AWRT, AGB is higher in Paleotropical than in Neotropical forests, in both plot-based and 553 

satellite-based datasets (Lewis et al., 2013; Slik et al., 2013; Avitabile et al., 2016; Sullivan et al., 554 

2017; Taylor et al., 2019). For example, plot-based studies find that mean AGB is 29% higher in 555 
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Asian than Latin American forests (Taylor et al., 2019), and 26% higher in central Africa than in 556 

central Amazonia (Lewis et al., 2013).  The dearth of studies of African forests is particularly 557 

concerning in light of these important biogeographic differences (Figs. S1, S9).  558 

Tropical forests in different biogeographic regions differ significantly in plant allocation, 559 

tree allometry, and forest structure. African forests have a larger proportion of their biomass in 560 

the largest trees than do Neotropical forests (Bastin et al., 2018). Allocation of NPP to AWP is 561 

substantially higher in Asian than in Neotropical forests (Paoli & Curran, 2007; Malhi et al., 562 

2011; Taylor et al., 2019), which could contribute to the differences in AWP. Tropical trees in 563 

Asia are taller for the same diameter than those in other tropical regions (Feldpausch et al., 564 

2012), with Africa intermediate and American trees shortest (Banin et al., 2012). These 565 

differences in tree height persist even after controlling for differences in climate and soils, and 566 

even when comparing related taxa among regions; e.g., Asian trees in the family Fabaceae are 567 

taller than confamilials in Africa and the Americas (Banin et al., 2012).  568 

Differences in continental averages in part reflect differences in the frequencies of 569 

different climate regimes (Parmentier et al., 2007), but substantial differences remain even 570 

after controlling for climate (Corlett & Primack, 2011). These can be explained by differences in 571 

the composition of plant and animal communities related to historical contingency and 572 

evolutionary legacy (Cavender-Bares et al., 2016). Taxonomic composition of tropical forests 573 

varies strongly across biogeographic realms, which align to a large degree with continents (Slik 574 

et al., 2018). Asian tropical forests are dominated by trees in the Dipterocarpaceae, a family 575 

that is almost absent in the Americas and Africa. Dipterocarp trees are distinctive in their 576 

combination of ectomycorrhizal associations, tall architecture, seed dispersal by wind, and mast 577 



29 
 

fruiting (Ghazoul, 2016). Essentially, Asian tropical forests have a plant functional type that is 578 

substantially different from those in other tropical forests, and this leads to differences in 579 

stand-level AWP and AGB (Cavender-Bares et al., 2016), as well as selective pressures on co-580 

occurring trees to be similarly tall (Banin et al., 2012). Differences among biogeographic regions 581 

may also in part reflect differences in the animal community (Corlett & Primack, 2011). For 582 

example, African elephants reduce the abundance of small stems and favor the growth of fewer 583 

larger trees of higher wood density, resulting in elevated forest carbon stocks (Berzaghi et al., 584 

2019).  585 

VIII. Discussion  586 

Our review of spatial variation in tropical forest carbon stocks and fluxes documented 587 

considerable qualitative consistency across studies, while also illuminating areas of divergent 588 

results and limited data. AWP and other measures of productivity examined here decrease 589 

strongly with seasonal water limitation and elevation, and increase weakly with soil fertility. 590 

This is consistent with our understanding of how water availability, temperature, and nutrients 591 

affect photosynthesis, allocation and functional composition.  Favorable conditions for 592 

photosynthesis (i.e., moist, warm, and fertile) lead to greater allocation to AWP as well as 593 

functional shifts towards species with greater light use efficiency, such that these indirect 594 

effects reinforce the direct ones. This variation in AWP in turn contributes to AGB variation with 595 

the same factors, but AGB patterns with climate are much noisier than AWP patterns, and AGB 596 

variation with fertility does not necessarily align with AWP (Fig. 4). This reflects the importance 597 

of AWRT as a dominant driver of empirical variation in AGB (Johnson et al., 2016), the limited 598 

variation in AWRT that is explained by climate, and the strong decrease in AWRT with soil 599 



30 
 

fertility.  In general, our knowledge of AWRT drivers remains limited, although we know 600 

disturbance decreases AWRT.  Overall, high tropical biodiversity challenges our ability to explain 601 

patterns in tropical forest carbon stocks and fluxes, most obviously in the substantial 602 

differences among biogeographic regions.  603 

Residence time 604 

AWRT is determined by tree mortality and branch turnover rates, both of which remain 605 

poorly understood, especially in comparison with productivity. Failure to better understand 606 

tree mortality is reflected in models, which currently have very limited and mostly 607 

phenomenological representations of tree mortality, and thus completely fail to reproduce 608 

empirical variation in mortality and AGB (Fig. 2) (Galbraith et al., 2013; Friend et al., 2014; 609 

Koven et al., 2015). Our limited understanding of tropical tree mortality ultimately reflects the 610 

dearth of high-quality data on mortality patterns and mechanisms (McDowell et al., 2018). The 611 

binomial nature of mortality, the low mortality rates in tropical forests, and the relatively high 612 

temporal variation in mortality mean that sampling errors in mortality and woody residence 613 

time are large, such that very large sample sizes (in area and time) are needed to quantify 614 

geographic variation with useful precision (McMahon et al., 2019).   Calculation of woody 615 

residence time as the quotient of AGB and AWP provides an alternative approach that 616 

circumvents some of these problems, but is of course dependent on high-quality estimates of 617 

AGB and AWP, and has its own pitfalls (Ge et al., 2019).  There is an urgent need for much more 618 

data on tropical tree mortality and woody residence time.  Satellite-based methods have the 619 

potential to enable these to be estimated over much larger areas at much finer temporal 620 

resolution (Clark et al., 2004), but this potential has yet to be realized.  621 
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Branch turnover rates also contribute to woody residence time and are even less well 622 

understood than mortality. Branch turnover encompasses both “planned” branchfall as trees 623 

drop old branches and build new ones, and “unplanned” branchfall, e.g., due to damage when a 624 

neighboring tree falls.  Relatively few studies directly measure branchfall rates (but see Palace 625 

et al., 2008; Malhi et al., 2017; Moore et al., 2018), and spatiotemporal variability in branchfall 626 

is so high that sampling errors in such data are invariably large (Gora et al., 2019). Most AWP 627 

estimates from plot recensuses include only net increases in standing woody biomass without 628 

considering branch turnover, and thus are systematic underestimates.  Branchfall is also 629 

ignored by most AWRT calculations, which are thus systematic overestimates.   These AWP and 630 

AWRT estimates are mutually consistent, but a poor basis for modeling, because they 631 

underestimate the cost of tree growth. Incorporating the cost of branch turnover to dynamic 632 

vegetation models reduces tree biomass accumulation rates, improving estimates of forest size 633 

structure (Martínez Cano et al., 2020). More measurements of branch turnover are needed to 634 

provide information on this critical parameter, including its variation among tree species and 635 

with environmental conditions.  636 

Community ecology  637 

To understand spatial variation in tropical forest carbon stocks and fluxes it is critical to 638 

understand the drivers of variation in plant functional composition – in the relative abundance 639 

of plants varying in life history strategy and functional traits. As detailed in this review, every 640 

major environmental gradient in tropical forests is characterized by shifts in tree functional 641 

composition that influence patterns of productivity, mortality and biomass along these 642 

gradients (e.g., Gleason et al., 2009; Dalling et al., 2016). Understanding functional composition 643 
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is a complex problem involving historical biogeographic influences on species pools, species 644 

sorting by environmental filters, competition among species, and phenotypic variation within 645 

species (McGill & Brown, 2007). Empirical research provides considerable information on 646 

spatial variation in tropical tree species and functional composition, how species traits relate to 647 

performance under different environmental conditions, and on associated tradeoffs (e.g., 648 

Poorter & Markesteijn, 2008; Gleason et al., 2009; Brenes-Arguedas et al., 2013; Asner & 649 

Martin, 2016; Staver et al., 2019). Better representation of the diversity of tropical plant 650 

physiology and life history strategies in models is critical to capturing turnover in functional 651 

composition and associated shifts in forest functioning along environmental gradients (Levine 652 

et al., 2016) and among floristic realms (Slik et al., 2018; Taylor et al., 2019), as well as the 653 

diversity of locally coexisting functional types that determines functioning and responses to 654 

temporal climatic variation (Verheijen et al., 2015; Sakschewski et al., 2016; Powell et al., 2018).  655 

Liana abundance varies greatly among tropical forests, and strongly influences forest 656 

carbon stocks and fluxes. Liana abundance increases with soil fertility and disturbance, and 657 

decreases with rainfall and elevation (Schnitzer & Bongers, 2002); it also varies greatly within 658 

individual tropical forest sites (e.g., Schnitzer et al., 2012). Multiple hypotheses have been 659 

proposed to explain these patterns, yet the mechanisms underlying variation in liana 660 

abundance remain little understood (Schnitzer, 2018; Muller-Landau & Pacala, 2020). Trees 661 

with heavy liana infestations had approximately half the growth and twice the mortality rates 662 

of liana-free trees in observational studies (Ingwell et al., 2010; Wright et al., 2015; Visser et al., 663 

2018), and experimental liana removal increased tree growth 25-372% (Estrada-Villegas & 664 

Schnitzer, 2018). Thus, lianas decrease AWP, AWRT, and thereby AGB.  Mean AGB decreases 665 



33 
 

more than two-fold with increasing liana abundance across sites (Duran & Gianoli, 2013), and 666 

experimental liana removal increased AGB accumulation in secondary forests by 75% (van der 667 

Heijden et al., 2015). Further, lianas differentially affect trees of different species (Muller-668 

Landau & Visser, 2019), and thus likely influence tree community functional composition, which 669 

may magnify or mitigate the direct effects of lianas. Tropical lianas are themselves very diverse, 670 

with local species richness typically on the order of a third to half of that of trees, and thus liana 671 

functional composition may also play a role. Liana species vary in their traits and effects on 672 

trees (Ichihashi & Tateno, 2011), and shifts in liana composition among sites may thus 673 

contribute to variation in forest carbon dynamics (Muller-Landau & Visser, 2019). The 674 

incorporation of lianas in models involves unique challenges because of the complexities of 675 

their interactions with host trees, but may be critical to reproducing major changes in forest 676 

structure and functioning associated with variation in liana abundance along successional, 677 

climate, and disturbance gradients (Brugnera et al., 2019). 678 

Most research on variation in plant functional composition has focused on direct 679 

environmental influences on plant performance. However, environmental conditions may also 680 

influence plants via changes in antagonistic and mutualistic interactions with microbes, 681 

invertebrates, and vertebrates. For example, there is some evidence of higher herbivory in sites 682 

with higher soil fertility, where plant tissue nutrient concentrations are higher (Campo & Dirzo, 683 

2003). Differences in vertebrate abundance and community composition contribute to 684 

savanna-forest boundaries and possibly differences in forest structure among biogeographic 685 

regions (Corlett, 2016). And it has long been hypothesized that pest pressures is higher at 686 

wetter sites, and may drive compositional shifts and higher plant diversity (Janzen & Schoener, 687 
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1968; Givnish, 1999), although evidence to date remains limited (but see (Spear et al., 2015)). 688 

The influences of biotic interactions have been assumed to be secondary to more direct 689 

environmental influences, and have been ignored in vegetation models; however, they may be 690 

critical to predicting future forest carbon dynamics under global change, including defaunation 691 

(Dirzo et al., 2014).  692 

Conclusions and future directions  693 

An overview of decades of empirical research in tropical forests suggests general 694 

patterns in productivity, residence time, and estimated AGB variation, but studies to date have 695 

important limitations. First, essentially all studies have sizable sampling errors (see Methods), 696 

and these are especially large for studies with smaller plot sizes, smaller numbers of sites, and 697 

shorter measurement periods (Clark et al., 2017).  Second, studies to date all rest on the 698 

application of one or a few allometric equations across multiple sites, and almost none involve 699 

site-specific measurements of branch turnover.  Systematic differences in biomass allometries 700 

and/or branch turnover along environmental gradients could lead patterns in true AGB, AWP, 701 

and AWRT to diverge substantially from those estimated by current methods.  Third, study sites 702 

are not well-distributed across tropical forests, due to local and global bias in plot placement 703 

and research effort (Fig. S1, S9).   There is a critical need and opportunity for future empirical 704 

research that overcomes these limitations by taking advantage of new technologies like laser 705 

scanning to more directly measure biomass allometries, branch turnover, and their variation 706 

among sites (Stovall et al., 2018), and of new and forthcoming satellite remote sensing products 707 

that will provide much larger and better distributed datasets on forest carbon cycling (Schimel 708 

et al., 2019).   709 
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We also critically need a mechanistic understanding of the emergence of observed 710 

empirical patterns, so that we can reproduce them in models for the right reasons and have 711 

some hope of correctly predicting responses to future novel climate conditions (Wright et al., 712 

2009).  Research to date provides considerable support for various hypotheses regarding 713 

contributing mechanisms.  However, every environmental pattern involves multiple 714 

mechanisms, and we lack an understanding of the relative importance of different mechanisms 715 

and their interactions.  A combination of mechanistic empirical studies and mechanistic 716 

modeling is key to resolving this uncertainty, yet many of the hypothesized underlying 717 

processes are not yet represented in models, which currently fail to reproduce key patterns 718 

(Fig. 2). This is not surprising considering the models’ very limited representation of tree 719 

mortality (Galbraith et al., 2013; Johnson et al., 2016), tropical tree functional diversity 720 

(Sakschewski et al., 2016), and many other processes.  721 

Fortunately, a new generation of models has been developed in the last decade that 722 

better captures some spatial variation in tropical forest biomass. Whereas older models 723 

represented forest vegetation as a “big leaf”, new vegetation demographic approaches 724 

explicitly model the growth, survival, and reproduction of trees or cohorts of trees (Fisher et al., 725 

2018). When run with prescribed meteorological conditions, these models have succeeded in 726 

reproducing a multitude of patterns within individual tropical sites, as well as general patterns 727 

of among-site variation along some environmental gradients (Seiler et al., 2014; Levine et al., 728 

2016; Xu et al., 2016; Longo et al., 2019; Medvigy et al., 2019; Koven et al., 2020; Martínez 729 

Cano et al., 2020). However, most still contain large systematic errors; e.g., predicting too many 730 

large trees (Koven et al., 2020), and/or excessively high tree mortality rates (Longo et al., 2019). 731 
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Further, they mostly lack the mechanisms needed to capture temporal responses to drought or 732 

spatial variation with soil fertility, disturbance, and biogeographic region.  733 

Tree mortality, branch turnover, tree functional composition, and biotic interactions of 734 

trees with lianas and other organisms are key areas for further research, both for empirical data 735 

collection as well as modeling. Advances in remote sensing promise to yield much more and 736 

more widely distributed data on tropical forest structure and function (Schimel et al., 2019), but 737 

adequate investment in concurrent ground data collection in the tropics is vital if these 738 

missions are to fulfill their promise (Chave et al., 2019). Every type of evidence on its own has 739 

key limitations; triangulation across multiple lines of evidence is needed to reach robust 740 

conclusions (Munafo & Smith, 2018). We must integrate empirical studies and mechanistic 741 

modeling to make progress on the big questions of the mechanisms of extant variation in 742 

tropical forests today and the implications for their future trajectories (Hofhansl et al., 2016; 743 

Fisher et al., 2018).  744 
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Box 1. Estimating aboveground biomass, woody productivity, and residence 755 
time  756 

Aboveground biomass (AGB, mass area-1), our central measure of biomass carbon stocks, is 757 
estimated aboveground woody biomass per area, typically of trees above some threshold 758 
diameter, omitting smaller trees and lianas (woody vines). Individual tree aboveground biomass 759 
is estimated from tree census data with allometric equations and summed to obtain plot-level 760 
totals. AGB is also estimated from lidar and radar measurements of canopy structure using 761 
phenomenological relationships with plot-based AGB estimates. Tree basal area (BA, basal area 762 
of trunks per ground area) and mean canopy height are generally well-correlated with AGB 763 
across sites, and thus are reasonably good proxies for evaluating among-site variation.  764 

Aboveground woody productivity (AWP, mass area-1 time-1), our central measure of 765 
productivity, is typically estimated from repeat tree censuses as the sum of the growth in 766 
estimated AGB of surviving trees plus the AGB of recruits (trees newly above the size 767 
threshold), per area per time. Such calculations ignore branch production that merely 768 
compensates for branchfall (see Methods). Like AGB, AWP is based on allometric equations and 769 
generally omits lianas and smaller trees. Parallel calculations of basal area productivity (BAP) 770 
are good proxies for among-site variation in AWP.   771 

Aboveground woody residence time (AWRT, time) is the average time carbon remains in 772 
aboveground woody biomass before it becomes dead wood. AWRT is determined by the 773 
mortality rates of woody plants and branches, with large tree mortality rates disproportionately 774 
important. In mature forests, AWRT is most often estimated as the quotient of biomass and 775 
productivity (AWRT = AGB / AWP), because productivity fluxes are more constant in time than 776 
mortality fluxes and assumed equal over the long-term.  When AWP calculations ignore 777 
branchfall, AWRT misses it as well.  AWRT is inversely related to tree mortality rates and tree 778 
turnover rates across sites.  779 

See Methods and Notes S1 for details.  780 

 781 
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Figures 

 
Figure 1. Climate, geomorphology, and biogeographic realm and plant functional composition 
interact to influence tropical forest aboveground woody productivity (AWP, units of mass area-1 
time-1), aboveground woody residence time (AWRT, time) and thus aboveground woody 
biomass density (AGB, mass area-1, black box) via multiple pathways. Here blue boxes represent 
fluxes (mass area-1 time-1), fat light blue arrows represent the factors by which the one quantity 
is multiplied to obtain another (e.g., NPP = GPP*CUE), and thin arrows represent causal 
influences. Note that GPP (gross primary productivity) is the sum of NPP (net primary 
productivity) and autotrophic respiration; NPP is the sum of aboveground NPP (ANPP) and 
belowground NPP (root production); and ANPP is the sum of AWP and canopy productivity 
(leaves, fruits, fine woody branches, all measured as litterfall).  Box 1 gives basic information on 
measurement methods for AGB, AWP, and AWRT; Notes S1 provides additional details on these 
and related variables.  
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Figure 2. Earth System Model (ESM) predictions of aboveground woody biomass (AGB, top 
row), aboveground woody productivity (AWP, middle row), and aboveground woody residence 



41 
 

time (AWRT, bottom row) show little relation with observational data (Galbraith et al., 2013) 
for 177 old-growth tropical forests. Both observed and modeled residence times are calculated 
as AGB/AWP (Box 1). ESMs simulate vegetation dynamics in tropical forests around the globe as 
part of their simulation of the entire earth system, including the atmosphere, ocean, and land 
surface, and their interactions.  Spatial variation in predicted climates in these models 
translates to spatial variation in predicted vegetation because of modeled effects of climate on 
photosynthesis and respiration, and thus on woody productivity and potentially the dominant 
plant functional type, with effects that vary depending on the details of model structure and 
parameterization.  Model predictions are from the most recent set of publicly released ESM 
models and simulation results, from the Coupled Model Intercomparison Project 5 (Taylor et 
al., 2012). Further details are given in Notes S1.   
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Figure 3.  Literature results on spatial variation in productivity (a), residence time (b), and 
aboveground biomass (c) with precipitation, dry season length, and other measures of climatic 
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water availability, graphed in relation to the range of precipitation in the study sites (on a log 
scale). Blue indicates that productivity, residence time, or biomass tend to be higher in wetter 
sites; orange indicates that they tend to be higher in drier sites; dashed blue and orange a 
variable pattern that depends on the range of the independent variable or on temperature; and 
black indicates no relationship. Asterixes indicate statistically significant effects.  Bold highlights 
studies in which median plot area is 1 ha or larger, whereas results for studies with smaller plot 
sizes are shown in italics.  Note that the patterns are always reported here in terms of the 
response of productivity, residence time, or biomass, even if the response metric is inversely 
related to these (e.g., a blue turnover result indicates that in wetter sites tree turnover is lower 
implying residence time is higher). These results are graphed in relation to temperature range 
in Fig. S3.  Abbreviations: AWP = aboveground woody productivity, BAP = basal area 
productivity, ANPP = aboveground net primary productivity, Litter = litterfall; NPP = net primary 
productivity, GPP = gross primary productivity, AWRT = aboveground woody residence, Turn = 
tree turnover rate, AGB = aboveground biomass, CanHt = canopy height, BA = basal area. See 
Box 1, Fig. 1, and Notes S1 for definitions, measurement methods, and interrelationships of 
these response variables.  Literature results are coded by the first 8 letters of the first author’s 
name, the last 2 digits of the year, a letter indicating which set of sites within the publication (if 
there is more than one set of sites for the study in the database), and the number of sites 
included within parentheses (Dataset S1).  
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Figure 4. Schematic of patterns of variation in tropical forest aboveground woody productivity 
(AWP), residence time (AWRT), and biomass (AGB) with climatic water availability(a), elevation 
in moist or wet sites (b), soil fertility (c), and disturbance (d).  Text size reflects variation in a 
given variable along the environmental gradient; e.g., AWP and AGB increase with climatic 
water availability. (Watercolors by K. T. Anderson-Teixeira.)  
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Figure 5. Variation in the distributions of mean annual temperature (a), mean cloud cover (b), 
and mean annual precipitation (c) in relation to elevation in tropical forests. Panels show violin 
plots of the distribution across 1-km pixels, with the red dots indicating medians. Tropical forest 
area was defined based on SYNMAP (Jung et al., 2006) as land between 23.44 S and 23.44 N 
latitude, in land cover types classified as “trees” (see Fig. S6; see also Figs. S7, S8 for versions 
including additional land cover types). Mean elevation data from SRTM 
(https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/); mean annual 
temperature and precipitation from CHELSA (http://chelsa-climate.org/); and cloud cover from 
Wilson and Jetz (Wilson & Jetz, 2016) 
(https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002415). The violin 
plots for annual precipitation are truncated at 6000 mm for graphing (at most 0.7% of data 
were above 6000 mm in any elevation class); the form of the plots and the location of the 
medians are based on the complete untruncated datasets.  

https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
http://chelsa-climate.org/
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002415
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Figure 6.  Literature results on spatial variation in productivity (a,d), residence time (b, e), and 
aboveground biomass (c, f) with elevation (a-c) or temperature (d-f), graphed in relation to the 
range in elevation or temperature, respectively, in the study sites. Red indicates that 
productivity, residence time, or biomass tend to be higher in lower elevation sites or warmer; 
purple indicates that they tend to be higher in higher elevation or cooler sites; black indicates 
no relationship; and dashed red and purple that they exhibit a variable relationship depending 
either on the range of the independent variable or on a precipitation variable. Asterixes 
indicate statistically significant effects.  Bold highlights studies in which median plot area is 1 ha 
or larger, whereas results for studies with smaller plot sizes are shown in italics.  These results 
are graphed in relation to precipitation range in Fig. S8.  Abbreviations: AWP = aboveground 
woody productivity, BAP = basal area productivity, ANPP = aboveground net primary 
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productivity, Litter = litterfall; NPP = net primary productivity, GPP = gross primary productivity, 
AWRT = aboveground woody residence, Mort = tree mortality rate, Turn = tree turnover rate, 
AGB = aboveground biomass, CanHt = canopy height, BA = basal area. Literature results are 
coded by the first 8 letters of the first author’s name, the last 2 digits of the year, a letter 
indicating which set of sites within the publication, and the number of sites included within 
parentheses (Dataset S1).  These Response variable and study abbreviations as in Fig. 3 (Dataset 
S1).   
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Figure 7.  Literature results on spatial variation in productivity (a), residence time (b), and 
aboveground biomass (c) with soil fertility, graphed in relation to the soil fertility measure used 
(Multi = a soil fertility axis or classification that encompassed multiple nutrients; P = 
phosphorus; CEC = cation exchange capacity; Bases = total soil bases; Other includes studies 
using nitrogen, potassium, magnesium, and calcium.  Green indicates that productivity, 
residence time, or biomass tend to be higher in more fertile sites; tan indicates that they tend 
to be higher in less fertile sites, and black indicates no relationship or an inconsistent 
relationship. Asterixes indicate statistically significant effects.  Bold highlights studies in which 
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median plot area is 1 ha or larger, whereas results for studies with smaller plot sizes are shown 
in italics.  For studies that investigate multiple soil fertility measure, the text denoting the 
response variable is graphed in the column corresponding to the variable that exhibited the 
strongest relationship; additional results for other types of soil variables are indicated with an 
asterix for significant results, and a tilde for others. In some cases results for secondary 
variables reflect weaker tests of effects (e.g., correlations) than the main results (e.g., multiple 
regression), and thus the secondary results can be significant while the primary results are not 
(e.g., turnover results for Quesada et al. 2012).  Abbreviations: AWP = aboveground woody 
productivity, BAP = basal area productivity, ANPP = aboveground net primary productivity, 
Litter = litterfall; NPP = net primary productivity, GPP = gross primary productivity, AWRT = 
aboveground woody residence, Mort = tree mortality rate, Turn = tree turnover rate, AGB = 
aboveground biomass, CanHt = canopy height, BA = basal area. Literature results are coded by 
the first 8 letters of the first author’s name, the last 2 digits of the year, a letter indicating which 
set of sites within the publication, and the number of sites included within parentheses 
(Dataset S1).   
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Supporting Information  
 

Notes S1. Additional information on methods.  

Figure S1. Global distribution of data underlying the studies of tropical forest productivity, 
woody residence time, and biomass reviewed here. 

Figure S2. Distribution of tropical land area and forest area with respect to mean annual 
precipitation and mean annual temperature. 

Figure S3.  Literature results on spatial variation in productivity, residence time, aboveground 
biomass, and associated variables with precipitation, dry season length, and other measures of 
climatic water availability, graphed in relation to the range of temperature in the study sites.   

Figure S4. Mean annual cloud cover in relation to temperature in tropical forests. 

Figure S5.  Literature results on spatial variation in productivity, residence time, aboveground 
biomass, and associated variables with elevation or temperature, graphed in relation to the 
range in precipitation in the study sites.  

Figure S6. Map of relevant SYNMAP land cover classes in the tropics. 

Figure S7. Variation in the distributions of mean annual temperature, mean cloud cover, and 
mean annual precipitation in relation to elevation in tropical forests, when tropical forests are 
defined to include land cover type ‘trees and shrubs’ in addition to ‘trees’.  

Figure S8. Variation in the distributions of mean annual temperature, mean cloud cover, and 
mean annual precipitation in relation to elevation in tropical forests, when tropical forests are 
defined to include land cover types ‘trees and shrubs’ and ‘trees and grasses’ in addition to 
‘trees’.  

Figure S9. Interactive version of Fig. S1, showing the global distribution of data underlying the 
studies of tropical forest productivity, woody residence time, and biomass reviewed here. 

Dataset S1. Database of the literature results on environmental variation in tropical forest 
productivity, woody residence time, and biomass that appear in Figs. 3, 6 and 7.   
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Citations corresponding to entries in Figures 3, 
6, and 7.  This is a placeholder to insure that 
they appear in the references.   
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